Wie bestimmt man das Moment der Reibungskräfte?

Inhaltsverzeichnis:

Wie bestimmt man das Moment der Reibungskräfte?
Wie bestimmt man das Moment der Reibungskräfte?
Anonim

Wenn sie Probleme in der Physik lösen, bei denen sich Objekte bewegen, sprechen sie immer von Reibungskräften. Sie werden entweder berücksichtigt oder vernachlässigt, aber niemand zweifelt an ihrer Anwesenheit. In diesem Artikel werden wir uns überlegen, was das Moment der Reibungskräfte ist, und auch Probleme aufzeigen, die wir mit den gewonnenen Erkenntnissen beseitigen werden.

Die Kraft der Reibung und ihre Natur

Die Natur der Reibung
Die Natur der Reibung

Jeder versteht, dass, wenn sich ein Körper in irgendeiner Weise auf der Oberfläche eines anderen bewegt (rutscht, rollt), es immer eine Kraft gibt, die diese Bewegung verhindert. Sie wird dynamische Reibungskraft genannt. Der Grund für sein Auftreten hängt mit der Tatsache zusammen, dass alle Körper mikroskopisch kleine Rauhigkeiten auf ihren Oberflächen aufweisen. Wenn zwei Objekte in Kontakt kommen, beginnt ihre Rauheit miteinander zu interagieren. Diese Wechselwirkung ist sowohl mechanischer Natur (der Peak fällt in das Tal) als auch auf atomarer Ebene (Dipolanziehung, Van-der-Waals- undandere).

Wenn die sich berührenden Körper in Ruhe sind, muss, um sie relativ zueinander in Bewegung zu setzen, eine Kraft aufgebracht werden, die größer ist als die, um das Gleiten dieser Körper übereinander bei a aufrechtzuerh alten konstante Geschwindigkeit. Daher wird neben der dynamischen Kraft auch die Haftreibungskraft berücksichtigt.

Eigenschaften der Reibungskraft und Formeln zu ihrer Berechnung

Der Schulphysikkurs besagt, dass die Reibungsgesetze erstmals im 17. Jahrhundert vom französischen Physiker Guillaume Amonton aufgestellt wurden. Tatsächlich wurde dieses Phänomen Ende des 15. Jahrhunderts von Leonardo da Vinci untersucht, wobei ein sich bewegendes Objekt auf einer glatten Oberfläche betrachtet wurde.

Die Reibungseigenschaften lassen sich wie folgt zusammenfassen:

  • die Reibungskraft wirkt immer entgegen der Bewegungsrichtung des Körpers;
  • ihr Wert ist direkt proportional zur Stützreaktion;
  • es kommt nicht auf die Kontaktfläche an;
  • es hängt nicht von der Bewegungsgeschwindigkeit ab (für niedrige Geschwindigkeiten).

Diese Eigenschaften des betrachteten Phänomens erlauben es uns, die folgende mathematische Formel für die Reibungskraft einzuführen:

F=ΜN, wobei N die Reaktion des Trägers ist, Μ der Proportionalitätskoeffizient ist.

Der Wert des Koeffizienten Μ hängt ausschließlich von den Eigenschaften der aneinander reibenden Oberflächen ab. Wertetabelle für einige Oberflächen ist unten angegeben.

Gleitreibungskoeffizienten
Gleitreibungskoeffizienten

Für die Haftreibung wird dieselbe Formel wie oben verwendet, aber die Werte der Koeffizienten Μ für dieselben Oberflächen sind völlig unterschiedlich (sie sind größer,als beim Gleiten).

Ein Sonderfall ist die Rollreibung, wenn ein Körper auf der Oberfläche eines anderen abrollt (nicht gleitet). Wenden Sie für Kraft in diesem Fall die Formel an:

F=fN/R.

Hierbei ist R der Radius des Rades, f der Rollbeiwert, der laut Formel die Längendimension hat, die ihn vom dimensionslosen Μ unterscheidet.

Rollreibung zweier Wellen
Rollreibung zweier Wellen

Kraftmoment

Bevor die Frage beantwortet wird, wie man das Moment der Reibungskräfte bestimmt, ist es notwendig, das physikalische Konzept selbst zu betrachten. Das Kraftmoment M wird als physikalische Größe verstanden, die als Produkt aus dem Arm und dem Wert der darauf aufgebrachten Kraft F definiert ist. Unten ist ein Bild.

Moment der Macht
Moment der Macht

Hier sehen wir, dass das Aufbringen von F auf die Schulter d, die gleich der Länge des Schraubenschlüssels ist, ein Drehmoment erzeugt, das bewirkt, dass sich die grüne Mutter löst.

Die Formel für das Kraftmoment lautet also:

M=dF.

Beachte, dass die Art der Kraft F keine Rolle spielt: Sie kann elektrisch, gravitativ oder durch Reibung verursacht werden. Das heißt, die Definition des Moments der Reibungskraft ist die gleiche wie am Anfang des Absatzes, und die geschriebene Formel für M bleibt gültig.

Wann tritt Reibungsmoment auf?

Diese Situation tritt auf, wenn drei Hauptbedingungen erfüllt sind:

  • Zunächst muss es ein rotierendes System um eine Achse geben. Es kann sich beispielsweise um ein Rad handeln, das sich auf Asph alt bewegt oder sich horizontal auf einer Achse dreht.gefundene Schallplatte.
  • Zweitens muss es Reibung zwischen dem rotierenden System und einem Medium geben. In den obigen Beispielen: das Rad wird Rollreibung ausgesetzt, wenn es mit der Asph altoberfläche interagiert; Wenn Sie eine Musikplatte auf einen Tisch legen und drehen, erfährt sie Gleitreibung auf der Oberfläche des Tisches.
  • Drittens soll die entstehende Reibungskraft nicht auf die Rotationsachse wirken, sondern auf die rotierenden Elemente des Systems. Wenn die Kraft einen zentralen Charakter hat, das heißt, sie wirkt auf die Achse, dann ist die Schulter Null, also wird sie kein Moment erzeugen.

Wie findet man das Reibungsmoment?

Um dieses Problem zu lösen, müssen Sie zuerst bestimmen, welche rotierenden Elemente von der Reibungskraft betroffen sind. Dann sollten Sie den Abstand dieser Elemente zur Rotationsachse ermitteln und bestimmen, welche Reibungskraft auf jedes Element wirkt. Danach müssen die Abstände ri mit den entsprechenden Werten Fi multipliziert und die Ergebnisse addiert werden. Als Ergebnis wird das Gesamtmoment der Rotationsreibungskräfte nach folgender Formel berechnet:

M=∑riFi.

Hierbei ist n die Anzahl der im Rotationssystem auftretenden Reibungskräfte.

Es ist merkwürdig festzustellen, dass, obwohl M eine Vektorgröße ist, daher beim Hinzufügen von Momenten in Skalarform seine Richtung berücksichtigt werden sollte. Reibung wirkt immer entgegen der Drehrichtung, also wird in jedem Moment Mi=riFi ein und dasselbe Zeichen haben.

Als nächstes werden wir zwei Probleme lösen, wo wir verwendenbetrachtete Formeln.

Rotation der Mahlscheibe

Bulgarin beim Schneiden von Metall
Bulgarin beim Schneiden von Metall

Es ist bekannt, dass sich eine Schleifscheibe mit einem Radius von 5 cm beim Schneiden von Metall mit konstanter Geschwindigkeit dreht. Es muss bestimmt werden, welches Kraftmoment der Elektromotor des Geräts erzeugt, wenn die Reibungskraft auf das Metall der Scheibe 0,5 kN beträgt.

Da sich die Scheibe mit konstanter Geschwindigkeit dreht, ist die Summe aller auf sie wirkenden Kraftmomente gleich Null. In diesem Fall haben wir nur 2 Momente: vom Elektromotor und von der Reibungskraft. Da sie in verschiedene Richtungen wirken, können wir die Formel schreiben:

M1- M2=0=> M1=M 2.

Da die Reibung nur am Kontaktpunkt der Schleifscheibe mit dem Metall wirkt, also im Abstand r von der Rotationsachse, ist ihr Kraftmoment gleich:

M2=rF=510-2500=25 Nm.

Da der Elektromotor das gleiche Drehmoment erzeugt, erh alten wir die Antwort: 25 Nm.

Walzende Holzscheibe

Holzscheibe
Holzscheibe

Da ist eine Scheibe aus Holz, ihr Radius r beträgt 0,5 Meter. Diese Scheibe beginnt auf einer Holzoberfläche zu rollen. Es muss berechnet werden, welche Distanz er überwinden kann, wenn seine anfängliche Rotationsgeschwindigkeit ω 5 rad/s beträgt.

Die kinetische Energie eines rotierenden Körpers ist:

E=Iω2/2.

Hier bin ich das Trägheitsmoment. Die Rollreibungskraft bewirkt, dass die Scheibe langsamer wird. Die von ihm geleistete Arbeit kann berechnet werdennach folgender Formel:

A=Mθ.

Hier ist θ der Winkel im Bogenmaß, um den sich die Scheibe während ihrer Bewegung drehen kann. Der Körper rollt, bis seine gesamte kinetische Energie für die Reibungsarbeit aufgewendet ist, das heißt, wir können die geschriebenen Formeln gleichsetzen:

2/2=Mθ.

Das Trägheitsmoment der Scheibe I ist mr2/2. Um das Moment M der Reibungskraft F zu berechnen, ist zu beachten, dass es entlang der Kante der Scheibe am Kontaktpunkt mit der Holzoberfläche wirkt, dh M=rF. F=fmg / r (die Reaktionskraft des Trägers N ist gleich dem Gewicht der Scheibe mg). Setzen wir alle diese Formeln in die letzte Gleichheit ein, erh alten wir:

mr2ω2/4=rfmg/rθ=>θ=r 2ω2/(4fg).

Da die von der Scheibe zurückgelegte Strecke L mit dem Winkel θ durch den Ausdruck L=rθ in Beziehung steht, erh alten wir die endgültige Gleichung:

L=r3ω2/(4fg).

Der Wert von f ist der Tabelle für Rollreibwerte zu entnehmen. Für ein Baum-Baum-Paar ist es gleich 1,510-3m. Wir ersetzen alle Werte, wir erh alten:

L=0, 5352/(41, 510-3 9, 81) ≈ 53,1 m.

Um die Richtigkeit der resultierenden endgültigen Formel zu bestätigen, können Sie überprüfen, ob die Längeneinheiten erh alten wurden.

Empfohlen: