Wir laden Sie ein, einen so großen Mathematiker wie Euklid kennenzulernen. Eine Biographie, eine Zusammenfassung seiner Hauptarbeit und einige interessante Fakten über diesen Wissenschaftler werden in unserem Artikel vorgestellt. Euklid (Lebensjahre - 365-300 v. Chr.) - ein Mathematiker aus der hellenischen Ära. Er arbeitete in Alexandria unter Ptolemaios I. Soter. Es gibt zwei Hauptversionen dessen, wo er geboren wurde. Nach dem ersten - in Athen, nach dem zweiten - in Tyrus (Syrien).
Euklids Biografie: interessante Fakten
Über das Leben dieses Wissenschaftlers ist nicht viel bekannt. Es gibt eine Nachricht, die Pappus von Alexandria gehört. Dieser Mann war ein Mathematiker, der in der 2. Hälfte des 3. Jahrhunderts n. Chr. lebte. Er bemerkte, dass der für uns interessante Wissenschaftler freundlich und sanft zu allen war, die irgendwie zur Entwicklung bestimmter mathematischer Wissenschaften beitragen könnten.
Es gibt auch eine Legende von Archimedes. Seine Hauptfigur ist Euklid. Eine Kurzbiographie für Kinder enthält normalerweise diese Legende, da sie sehr kurios ist und bei jungen Lesern das Interesse an diesem Mathematiker wecken kann. Darin steht, dass König Ptolemäus Geometrie studieren wollte. Jedoches stellte sich heraus, dass dies nicht einfach ist. Dann rief der König den gelehrten Euklid an und fragte ihn, ob es einen einfachen Weg gäbe, diese Wissenschaft zu verstehen. Aber Euklid antwortete, dass es keinen Königsweg zur Geometrie gebe. Dieser beflügelte Ausdruck ist uns also in Form einer Legende überliefert.
Anfang des 3. Jahrhunderts v. e. gründete das Museum von Alexandria und die Bibliothek von Alexandria Euclid. Eine kurze Biografie und seine Entdeckungen sind mit diesen beiden Institutionen verbunden, die auch Bildungszentren waren.
Euklid - ein Schüler Platons
Dieser Wissenschaftler hat die von Platon gegründete Akademie durchlaufen (sein Porträt ist unten abgebildet). Er lernte die philosophische Hauptidee dieses Denkers kennen, nämlich dass es eine unabhängige Ideenwelt gibt. Man kann mit Sicherheit sagen, dass Euklid, dessen Biographie mit Details geizt, ein Platoniker in der Philosophie war. Eine solche H altung bestärkte den Wissenschaftler in dem Verständnis, dass alles, was er geschaffen und in seinen „Prinzipien“dargelegt hat, eine ewige Existenz hat.
Der uns interessierende Denker wurde 205 Jahre später geboren als Pythagoras, 63 Jahre später Plato, 33 Jahre später Eudoxus, 19 Jahre später Aristoteles. Er lernte ihre philosophischen und mathematischen Werke entweder selbstständig oder durch Vermittler kennen.
Beziehung von Euklids "Anfängen" zu den Arbeiten anderer Wissenschaftler
Proclus Diadochos, neuplatonischer Philosoph (Lebensjahre - 412-485), Autor von Kommentaren zu den "Prinzipien", schlug vor, dass diese Arbeit reflektiertPlatons Kosmologie und "Pythagoräische Lehre…". In seiner Arbeit skizzierte Euklid die Theorie des Goldenen Schnitts (Bücher 2, 6 und 13) und regelmäßiger Polyeder (Buch 13). Als Anhänger des Platonismus verstand der Wissenschaftler, dass seine "Anfänge" zu Platons Kosmologie und zu den von seinen Vorgängern entwickelten Ideen über die numerische Harmonie beitragen, die das Universum charakterisiert.
Proclus Diadoch war nicht der Einzige, der die platonischen Körper und den Goldenen Schnitt schätzte. Auch Johannes Kepler (Lebensjahre - 1571-1630) interessierte sich für sie. Dieser deutsche Astronom stellte fest, dass es in der Geometrie zwei Schätze gibt - das ist der Goldene Schnitt (Teilung eines Segments im mittleren und äußersten Verhältnis) und der Satz des Pythagoras. Den Wert des letzten von ihnen verglich er mit Gold und den ersten mit einem Edelstein. Johannes Kepler verwendete platonische Körper bei der Erstellung seiner kosmologischen Hypothese.
Bedeutung "Gestartet"
Das Buch "Anfänge" ist das Hauptwerk, das Euklid geschaffen hat. Die Biografie dieses Wissenschaftlers ist natürlich von anderen Arbeiten geprägt, auf die wir am Ende des Artikels eingehen werden. Anzumerken ist, dass die Arbeiten mit dem Titel „Anfänge“, die alle wichtigen Fakten der theoretischen Arithmetik und Geometrie darlegen, von seinen Vorgängern zusammengestellt wurden. Einer von ihnen ist Hippokrates von Chios, ein Mathematiker, der im 5. Jahrhundert v. Chr. lebte. e. Auch Theudius (2. Hälfte 4. Jh. v. Chr.) und Leontes (4. Jh. v. Chr.) schrieben Bücher mit diesem Titel. Mit dem Aufkommen der euklidischen "Anfänge" wurden jedoch alle diese Werke außer Betrieb gesetzt. Euklids Buch war die BasisLehrmittel in Geometrie seit über 2.000 Jahren. Der Wissenschaftler, der seine Arbeit schuf, nutzte viele Errungenschaften seiner Vorgänger. Euklid verarbeitete die verfügbaren Informationen und trug das Material zusammen.
In seinem Buch fasst der Autor die Entwicklung der Mathematik im antiken Griechenland zusammen und schuf eine solide Grundlage für weitere Entdeckungen. Darin liegt die Bedeutung von Euklids Hauptwerk für die Weltphilosophie, die Mathematik und die gesamte Wissenschaft überhaupt. Es wäre falsch zu glauben, dass es darin besteht, die Mystik von Platon und Pythagoras in ihrem Pseudo-Universum zu stärken.
Viele Wissenschaftler haben Euklids Elemente geschätzt, darunter auch Albert Einstein. Er stellte fest, dass dies eine erstaunliche Arbeit ist, die dem menschlichen Geist das notwendige Selbstvertrauen für weitere Aktivitäten gegeben hat. Einstein sagte, dass jemand, der diese Schöpfung in seiner Jugend nicht bewundert hat, nicht für die theoretische Forschung geboren wurde.
Axiomatische Methode
Wir sollten die Bedeutung der Arbeit des für uns interessanten Wissenschaftlers in der brillanten Demonstration der axiomatischen Methode in seinen "Prinzipien" gesondert hervorheben. Diese Methode in der modernen Mathematik ist die seriöseste, die zur Untermauerung von Theorien verwendet wird. Auch in der Mechanik findet es breite Anwendung. Der große Wissenschaftler Newton baute die "Prinzipien der Naturphilosophie" nach dem Vorbild des von Euklid geschaffenen Werkes auf.
Die für uns interessante Biografie des Autors setzt sich fort mit einer Beschreibung der wichtigsten Bestimmungen seines Hauptwerkes.
Grundlagen von "Gestartet"
Im Buch"Beginnings" erläutert systematisch die euklidische Geometrie. Sein Koordinatensystem basiert auf Konzepten wie Ebene, Linie, Punkt, Bewegung. Die darin verwendeten Relationen lauten: „ein Punkt liegt auf einer Geraden, die auf einer Ebene liegt“und „ein Punkt liegt zwischen zwei anderen Punkten“.
Das System der Bestimmungen der euklidischen Geometrie, dargestellt in der modernen Präsentation, wird normalerweise in 5 Gruppen von Axiomen unterteilt: Bewegung, Ordnung, Kontinuität, Kombination und Parallelität von Euklid.
In dreizehn Büchern der "Anfänge" stellte der Wissenschaftler Arithmetik, Körpergeometrie, Planimetrie, Beziehungen nach Eudoxus vor. Es ist zu beachten, dass die Darstellung in dieser Arbeit streng deduktiv ist. Definitionen beginnen jedes Buch von Euklid, und im ersten von ihnen folgen Axiome und Postulate. Als nächstes kommen Sätze, die in Probleme (wo etwas gebaut werden muss) und Theoreme (wo etwas bewiesen werden muss) unterteilt sind.
Fehler in Euklids Mathematik
Der Hauptnachteil ist, dass die Axiomatik dieses Wissenschaftlers nicht vollständig ist. Es fehlen die Axiome Bewegung, Kontinuität und Ordnung. Daher musste der Wissenschaftler oft dem Auge vertrauen und auf die Intuition zurückgreifen. Die Bücher 14 und 15 sind spätere Ergänzungen zu dem von Euklid geschriebenen Werk. Seine Biographie ist nur sehr kurz, so dass nicht sicher gesagt werden kann, ob die ersten 13 Bücher von einer Person geschaffen wurden oder das Ergebnis der kollektiven Arbeit der von dem Wissenschaftler geleiteten Schule sind.
Weiterentwicklung der Wissenschaft
AussehenDie euklidische Geometrie ist mit der Entstehung visueller Darstellungen der Welt um uns herum verbunden (Lichtstrahlen, gespannte Fäden als Veranschaulichung gerader Linien usw.). Außerdem vertieften sie sich, wodurch ein abstrakteres Verständnis einer Wissenschaft wie der Geometrie entstand. N. I. Lobachevsky (Lebensjahre - 1792-1856) - Russischer Mathematiker, der eine wichtige Entdeckung machte. Er stellte fest, dass es eine Geometrie gibt, die sich von der euklidischen unterscheidet. Dies veränderte die Art und Weise, wie Wissenschaftler über den Weltraum denken. Es stellte sich heraus, dass sie keineswegs a priori sind. Mit anderen Worten, die in Euklids Elementen beschriebene Geometrie kann nicht als die einzige angesehen werden, die die Eigenschaften des uns umgebenden Raums beschreibt. Die Entwicklung der Naturwissenschaften (vor allem Astronomie und Physik) hat gezeigt, dass sie ihre Struktur nur mit einer gewissen Genauigkeit beschreibt. Außerdem kann es nicht auf den gesamten Raum als Ganzes angewendet werden. Die euklidische Geometrie ist die erste Annäherung an das Verständnis und die Beschreibung ihrer Struktur.
Übrigens war das Schicksal von Lobachevsky tragisch. Er wurde in der wissenschaftlichen Welt wegen seiner kühnen Gedanken nicht akzeptiert. Der Kampf dieses Wissenschaftlers war jedoch nicht umsonst. Den Siegeszug von Lobatschewskis Ideen sicherte Gauß, dessen Korrespondenz in den 1860er Jahren veröffentlicht wurde. Unter den Briefen waren begeisterte Kritiken des Wissenschaftlers über die Geometrie von Lobatschewski.
Andere Werke von Euklid
Sehr großes Interesse in unserer Zeit ist die Biographie von Euklid als Wissenschaftler. In der Mathematik machte er wichtige Entdeckungen. Dies wird dadurch bestätigt, dass seit 1482 bereits das Buch „Anfänge“standgeh alten hatmehr als fünfhundert Veröffentlichungen in verschiedenen Sprachen der Welt. Die Biografie des Mathematikers Euklid ist jedoch nicht nur durch die Entstehung dieses Buches geprägt. Er besitzt eine Reihe von Werken über Optik, Astronomie, Logik, Musik. Eines davon ist das Buch „Data“, das die Bedingungen beschreibt, die es ermöglichen, dieses oder jenes mathematische Maximalbild als „gegeben“zu betrachten. Ein weiteres Werk von Euklid ist ein Buch über Optik, das Informationen über die Perspektive enthält. Der für uns interessante Wissenschaftler hat einen Aufsatz über Katoptrie geschrieben (in dieser Arbeit skizzierte er die Theorie der Verzerrungen, die in Spiegeln auftreten). Es gibt auch ein Buch von Euklid mit dem Titel "Division of Figures". Leider ist das mathematische Werk "Über falsche Schlüsse" nicht erh alten geblieben.
Du hast also einen so großen Wissenschaftler wie Euklid getroffen. Wir hoffen, Sie fanden seine Kurzbiografie hilfreich.